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Abstract— Detecting facial feature points, or Face Alignment, 

are the problem of detecting semantic facial points in an image or 

a video, such as points around eyes, nose, mouth or jaw. Cascaded-

regression methods for Face Alignment are regression-based 

methods that work in a stage-by-stage cascade, iteratively 

improving an initial shape estimate in a coarse-to-fine manner. 

The goal of this work is to provide an open source implementation 

of various cascaded regression-based Face Alignment methods.  

This can be achieved by sparse subset of pixel intensity is high 

quality predictions and real-time performance. this paper has a 

General Framework based on gradient boosting for learning and 

n symbol of regression tree that optimizes the sum of square error 

at naturally handles missing data with the help of image data. The 

implementations achieved superior performance on the LFPW 

and Helen datasets compared to implementations of two other 

state-of-the-art techniques, namely an Active Appearance Model-

based approach and the Supervised Descent Method. Analysis and 

comparison of these algorithms are provided in this report. 

 
Index Terms— Facial Feature, Cascaded-Regression Tree 

I. INTRODUCTION 

The problem of face alignment concerns localising facial 

feature points (also called facial landmarks) in an image or a 

video. Typically, 17, 29 or 68 such points are elected to be 

searched for. Examples of such landmarks are points located 

around eyes, nose, lips or the jaw. These areas carry the most 

amount of semantic information for discriminative and 

generative purposes. The sought-after facial feature points are 

typically represented as a shape vector s =(x1,y1,x2,y2,...xn,yn) 

where (xi,yi) is the position of the i-th landmark within an image 

and n is the number of landmarks that we wish to detect. The 

objective of face alignment is to produce such a shape vector 

from a given image. 

 

 
Fig. 1.  The famous picture of Mr. Gandhi annotated with facial 

landmarks. Image source: built-in menpo assets 

 

Typically the problem of face alignment assumes an image 

with an annotated bounding box which has been detected to 

contain a face. These can be found using an off-the-shelf face 

detector, such as the one implemented in OpenCV based on a 

HOG-based (Histogram of Oriented Gradient) detector found in 

the dlib library. 

 

 
Fig. 2.  Picture annotated with facial landmarks 

 

Thus, a face alignment pipeline normally starts with a face 

detector, which takes the input image and outputs bounding 

boxes containing faces. The image together with bounding 

boxes is then fed to the face alignment component that returns 

a facial shape. 

The problem of face alignment is typically approached by 

supervised machine learning, whereby a model is trained from 

a large amount of human-labelled images and can then be used 

for facial shape estimation on unseen images. 

There are popular state-of-the-art approaches for face 

alignment currently studied. In sections, we will describe some 

of the most used ones, but we shall only have a closer look at 

regression-based methods, namely those that use a cascaded 

shape regression framework first proposed by. As opposed to 

other methods, these progressively refine an initial shape 

estimate in several stages directly from appearance, without 

learning any parametric shape or appearance models. 

II. METHOD 

A. Regression Based Method 

Regression-based methods do not build any parametric 

models of shape/appearance, but merely study the correlations 

between image features to infer a facial shape. These methods 

directly learn a regression function from image features to the 

target facial shape: 

                             M : φ(Image)− > s ∈ R2N  
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Where M is the model, φ(Image) is a function which extracts 

features from an image instance and s is the resultant facial 

shape. Examples of generally used features include pairwise 

pixel differences, Haar-like, SIFT or HOG features. There are 

various face alignment methods based on regression. As the 3 

methods studied in this thesis are all based on cascaded shape 

regression, we shall study this framework more closely in the 

following section. 

 

1) Cascaded shaped regression 

Many face alignment methods work in a cascaded 

framework whereby an ensemble of N regressors works in a 

stage-by-stage manner, which is referred to as stage regressors. 

This approach was first explored by. At test time, the input to a 

regressor Rt at stage t is a tuple (I,St−1) where I is an image and 

St−1 is the shape estimate from the previous stage (the initial 

shape S0 is typically the mean shape of the training set). The 

stage regressor extracts features w.r.t to the current shape 

estimate and regresses a vectorial shape increment:  St = St−1 + 

Rt(φt(I,St−1))  

Where φt(I,St−1) are referred to as shape-indexed features, i.e. 

they depend on the current shape estimate.The cascade 

progressively infers the shape in a coarse-to-fine manner - the 

early regressors handle large variations in shape, while the later 

ones ensure small refinements. After each stage, the shape 

estimate resembles the true shape closer and closer. 

B. Face Alignment by Explicit Shape Regression 

The Explicit Shape Regression method by Cao et al uses a 

cascade of regressors to infer the shape as a whole and explicitly 

minimises the alignment error over the training data.Each 

regressor in the cascade returns a vector which is used to update 

the current shape estimate in an additive manner. To achieve 

invariance to scale, the shape increment is returned normalised 

and has to be first transformed before the current shape estimate 

is updated. 

 

1) Training a stage regressor 

 

 
Fig. 3.  The average shape  

 

Before the training takes place, the mean shape is calculated 

out of all training shapes, which is rescaled and centred at the 

origin. To train a regressor at one stage, each ground truth shape 

in the training set is first centred at the origin and then aligned 

with the mean shape using a similarity alignment Mt,i 

(consisting of rotation and scaling only) that minimises the 

point-to-point alignment error between the two. Such a 

similarity transformation can be found by Generalised 

Procrustes Analysis.Operating in this “mean shape frame” is 

necessary to ensure scale-invariance. For a regressor at stage t, 

the (normalised) target shape increment is 

 

yt,i = Mt,i · (Si − St,i) 

  

Where Si is the ground truth shape of training image i and St,i is 

the estimate at stage t. 

The average shape calculated from all training ground truth 

shapes, normalised and centred at origin. Thus, each stage 

regressor is trained using tuples (Ii,St,i,yt,i) where the target 

variable is the normalised shape difference yt,i. The objective of 

the training is to explicitly minimise the L2 alignment error, 

which is the same objective that we have at testing: 

 

                                          Rt=argmin

 i=0 

 

To ensure better generalization, the whole training dataset is 

augmented by perturbing the initial estimates of the initial stage 

regressor. In my implementations, I performed 20 perturbations 

of each image. When testing, the current shape estimate is 

updated at each stage by the regressed normalised shape 

increment, which is transformed to the global coordinates using 

the corresponding inverse similarity alignment  

 

Mt,i
−1: St,i = St,i−1 + Mt,i−1 · Rt(Ii,Si−1) 

 

 
Fig. 4.  A pass through one stage regressor.  

 

A pass through one stage regressor. Each stage regressor 

extracts shape-indexed pixel difference features from the given 

image and returns a normalised shape increment. The current 

shape estimate is updated with the regressed shape increment 

transformed to the frame of current shape using Mt,i
−1. Source 

of included photo: LFPW dataset. 

 

2) Shape indexed local features 

To ensure invariance to illumination conditions, the features 

used in each regressor are differences in pixel intensities, 

extracted from the image based on the current shape estimate at 

each stage. 

The pixel-difference features are extracted locally w.r.t the 
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nearest landmark on the mean shape. This makes these features 

invariant to pose and expression variations. At training time, 

each stage regressor generates a random set of normalised pixel 

coordinates indexed relative to the nearest landmark on the 

mean shape. To extract features from a given image Ii with 

current shape estimate St,i, each of the local pixel coordinates 

(xl,i,yl,i) (where l is an index of the nearest landmark), is 

transformed by Mt,i
−1 to global coordinates of the image. The 

way feature extraction in machine learning problems is done 

significantly impacts the predictive power of a constructed 

model. In this case, the reasons for choosing the aforementioned 

features are as follows: 

 Local features close to facial landmarks are more 

discriminative than global ones. 

 Generating pixel coordinates with respect to the mean 

shape achieves geometric invariance. 

Using differences in pixel intensities rather than absolute 

values achieves invariance to illumination conditions. 

 

 
Fig. 5.  The pixel-difference features 

 

3) Correlation based features selection 

Ferns are trained using merely a subset of pixel-difference 

features extracted in the preceding regression level. In fact, 

ferns use only F = 5 out of P2 (P = 400 in the implementation) 

features. There are two requirements for the F features selected: 

 Features carry as much discriminative information as 

possible 

 Features are as independent to one another as possible 

The suggested method is based on calculating the correlation 

between each feature and the regression targets (ground truth 

shapes). This is achieved by generating a random unit vector, 

projecting each target onto it and finding the Pearson 

correlation coefficient between feature values and lengths of 

projections. 

C. One Millisecond Face Alignment with an Ensemble of 

Regression Trees 

This method outlined in [10] uses a very similar approach to 

the previous one [9] with a notable difference of using a 

decision tree as a primitive regressor instead of a random fern. 

Thus, in this method, each stage regressor in the cascaded 

shape regression framework is an ensemble of regression trees 

(also called a Random Forest). The objective of building a 

decision tree is explicitly minimising the alignment error in the 

least squares sense, which is the same goal as in testing. The 

training of the decision tree is governed by three rules: 

1) The optimal split in each internal node of the decision tree 

is chosen from a random pool of candidate splits s.t. it 

maximizes the variance reduction in the child nodes. 

2) Each leaf node contains the mean of all training samples 

falling into the leaf multiplied by a regularization 

parameter λ = 0.1 in a multiplicative manner. 

When choosing splits at internal nodes, rather than 

performing correlation-based feature selection, a pool of 

features are selected at random with an exponential prior 

distribution, biased towards pixel-pairs that are closer together. 

From this pool, features are further selected to maximize the 

variance reduction, as stated in point 1. 

 

1) Exponential prior distribution of selected features 

As mentioned in the previous section, the pool of features 

θpool is selected at random. However, as features consisting of 

pixel pairs that are closer together tend to be more 

discriminative as of those that are further away, the pixel pairs 

are sampled from an exponential distribution that favours closer 

pixels: P(p,p0) = ke−λ||p−p0||. 

III. EXPERIMENT 

In our experiments on facial feature detection we used two 

datasets with annotated faces – the LFPW dataset and the Helen 

dataset. 

LFPW: The Labelled Face Parts in-the-wild (LFPW) dataset 

consists of 1,287 images collected from the internet. The 

images contain faces with large variations of facial expressions, 

illumination, head pose, and occlusions.   

HELEN: The Helen dataset contains 2,330 annotated images 

downloaded from flickr.com website. The face images are of a 

high resolution, and the provided annotations are very detailed.  

We split the LFPW dataset into two parts – one for training 

and the other for validation. The Helen dataset was used only 

for testing of the results. 

  

 
Fig. 6.  Facial landmark detection using ensemble of cascaded regressions 

 

To evaluate the accuracy of our method, we used as error 

measure the point-to-point Euclidean distance, normalized by 

the distance between the outer corners of the eyes. Facial 

landmark detection performance was assessed on the 68 

landmark point’s mark-up scheme. Some images with detected 

landmarks are shown. Finally, the cumulative error rates were 

calculated for the Helen dataset. 
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A. Alignment Accuracy Analysis 

We trained all regression methods on a combined dataset 

consisting of training images from both LFPW and Helen. We 

performed tests on the corresponding testing datasets and 

measured point-to-point alignment errors normalised by the 

diagonal size of each shape. Normalisation of errors is 

important for consistency - without normalisation, large images 

would have inherently fairly large errors compared to smaller 

ones, even though the actual alignment might be reasonable. 

The SDM implementation comes from the menpofit library. 

The AAM based method builds a HOG-based Active 

Appearance Model and use the Alternating Inverse-

Compositional algorithm to perform fitting. This set up 

performed the best among the ones experimented with in. In my 

experiments, I used the reference implementation of HOG-AIC 

provided by. As can be seen from figure NAME, the three 

methods give comparable performance when tested on LFPW 

and Helen with ERT slightly outperforming the other two. 

These findings are consistent with the results from the original 

papers. 

B. Alignment Accuracy Analysis 

As the only difference between ERT and ESR is using a 

random forest instead of an ensemble of ferns, the increase in 

accuracy (around 6% and 2% lower mean error on LFPW and 

HELEN respectively) must be from a better generalisation 

ability of decision trees. This corresponds to intuition - the 

decision trees pick different features in different split nodes and 

explicitly maximise variance reduction at each split. On the 

contrary, ferns compare the same features across each level, 

which might not necessarily maximise variance reduction (note 

as each leaf node outputs the mean of all training shapes falling 

into that leaf, maximising variance reduction is equivalent to 

minimising sum of squares of alignment errors at training. 

Minimising square of alignment error is also our objective at 

test time.)Although LBF also uses a random forest (albeit per 

single landmark and combined with a linear regression matrix), 

its accuracy is slightly lower than the one of ERT. This is 

because in my tests, I opted for the faster and less accurate 

version of LBF that is referred to as LBF-fast in the original 

paper and consists of 5 stages of regression, 300 decision trees 

per stage, each of depth 5. The more accurate (but less efficient) 

version has 5 stages and 1200 decision trees of depth 7 per each 

stage. Unfortunately, I did not have enough computational 

resources to run this version and thus cannot comment on the 

accuracy. However, I expect the accuracy to be comparable to 

ERT - as there will be a greater number of local binary features; 

they will be a more discriminative descriptor of each shape. 

Also, the global regression matrix will have larger dimensions, 

thus will be capable of capturing more variation. 

IV. CONCLUSION 

From above work we understand that how and ensemble of 

regression tree is important and can be used to regress the 

location of  landmarks from face of spare subset of intensity 

values extracted from input image this way is very efficient and 

fast way.  
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