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Abstract: This paper presents an overview on scheduling of 

operating system services. 

 

Keywords: Operating System Services 

1. Introduction 

While modern applications are often multithreaded, the 

manual implementation of concurrent programs is inconvenient 

and error prone. One way to ease the implementation of such 

programs is to specify them as a set of tasks in data- or 

workflow graphs. These graphs describe the individual tasks, 

causal dependencies and data dependencies between them. 

Once all dependencies of one task are satisfied, it can be 

executed. Thereby, the order of execution is decoupled from the 

implementation of the program, which enables the underlying 

scheduler to exploit parallelism more efficiently. For its 

execution, a program relies on services offered by the operating 

system like, e.g., memory management, thread management or 

I/O. In order to utilize these services, applications use system 

calls. These transfer control from user space (application) to 

kernel space (operating system). Traditionally, these system 

calls are executed synchronously on the CPU core, where the 

system call was invoked by the application. This execution 

model comes with two major drawbacks: 

1) The invoking task is blocked while the system call is 

executed and 

2) Due to the execution of different types of system calls on the 

same CPU core, caches are overwritten when switching 

between them. Modern microkernels like Fiasco [1] and 

MyThOS [2] use message passing as a communication 

method between different kernel instances running on 

different CPU cores or even different nodes in a data center. 

Therefore, they are able to support system call forwarding, 

which solves the problems mentioned before and works as 

follows: When an application uses a system call, the local 

CPU core jumps to kernel mode and executed the respective 

system call handler. This handler function forwards the 

system call to another suitable OS instance running on a 

different CPU core and returns control to the application. 

Thereby, blocking is avoided as much as possible. 

Afterwards, the result of the system call can be fetched by 

the application asynchronously. By routing all system calls 

of a specific type to one or few dedicated CPU cores, the 

caches on these cores stay populated with related data, 

which even helps to speed up the execution of the system  

 

calls themselves. However, it is currently unclear which 

cores should process which system calls and thereby offer a 

specific service. Services like memory management can be 

executed by a single core or, in the case of distributed shared 

memory, by a central node in the cluster. This strategy may 

lead to high load on that core and therefore high waiting 

times for the system call’s result depending on the behavior 

of the application and the size of the computing cluster. This 

can be solved by replication of the respective service, which 

in turn leads to communication overhead due to 

synchronization and consistency overhead between the 

service instances. Therefore, the operating system requires 

a service placement system to determine the optimal 

placement and replication strategy for the service instances 

for each system call. It should be able to determine a 

mapping of service instances (processing a specific system 

call) to CPU cores. This decision should build upon 

information made available from the application and 

collected during its execution. 

2. Approach 

 In this work both the task mapping infrastructure (task 

scheduler) and a system for OS service placement (service 

scheduler) are developed. Due to different coherency levels 

(e.g. shared cache, shared memory, different nodes) and 

heterogeneous hardware (e.g. CPU, GPU), a hierarchical task 

scheduler was selected, where the hierarchy levels correspond 

to different coherency levels of the computing infrastructure, 

i.e., cluster, node, shared memory, shared cache. This task 

scheduler assigns tasks from an application’s flow graph to 

computational resources depending on (a) location of the input 

data, (b) its availability, (c) the expected runtime of the task and 

(d) the location of required operating system services. To 

determine whether a task is ready for execution, its data 

dependencies have to be evaluated. From the application’s 

perspective this is a difficult task, since the location of data is 

not transparent to the application. Therefore, the task scheduler 

developed in this thesis will be integrated into the operating 

system. It therefore can more efficiently check dependencies, 

since data mapping and memory layout are available. The 

dependencies of tasks upon specific operating system services 

(i.e. the information weather they may be called) are defined 

explicitly in the task description and can be extracted by the 

compiler. This information is used by the task scheduler for its 
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initial placement decision. In many fields, e.g. HPC, tasks are 

executed iteratively. In the majority of iterations, they exhibit 

similar behavior, e.g. a task may always reserve memory in the 

beginning and release it before terminating. Therefore, the calls 

of tasks to OS services can be predicted in terms of patterns. In 

order to identify these patterns all system calls have to be 

monitored. For this purpose, each task is assigned an ID either 

by the developer or the compiler. If two tasks have the same ID, 

they will execute the same function. This ID is used by each 

service instance to record the number of accesses per task ID 

over a given time frame. Using this information, the service 

scheduler can then determine affinities between services and 

task IDs. These are then used to place new tasks close to the 

services they will frequently use or replicate services to be more 

locally available to such tasks. In this work, tasks are 

considered to behave similarly across many executions. 

Therefore, system call patterns do not change rapidly, but they 

can be better approximated by observing additional executions. 

If the response time of a service instance is too high, it may be 

either overloaded or located too far from the tasks using it. In 

this case the service scheduler has to consider different options. 

While the replication of this service adds synchronization and 

consistency overhead, the migration of the instance closer to the 

tasks using it may avoid this overhead. However, depending on 

the behavior of the application’s tasks, replication may improve 

the overall performance of the system. The costs of both 

decisions, including reconfiguration cost, are evaluated by the 

service scheduler in order to find an optimal solution. 

3. Challenges 

 Although, many tasks, e.g. in HPC, exhibit similar runtime 

over multiple invocations it may vary between iterations or 

change entirely based on input data. On the other hand, the task 

scheduler requires information about the workload of a task to 

be able to schedule successive tasks accordingly. Therefore, a 

suitable estimation of a task’s runtime has to be found. This 

could be, e.g., exponential smoothing of previous runtimes. 

Based on input data tasks may exhibit entirely different 

behavior. However, this effect is expected to be negligible, 

since it often occurs at loop borders, which only make up a 

small fraction of the invocations. 

 Similar considerations have to be taken for the system call 

behavior of tasks. The frequency of system calls may evolve 

over time and change rapidly in some invocations. This is again 

compensated by exponential smoothing.  

One major challenge is the mutual dependency of the two 

schedulers. Given an operating system configuration with fixed 

service instances, the task scheduler can determine an optimal 

task schedule based on this OS configuration. In turn, the 

service scheduler can determine an optimal service placement, 

depending on a fixed task distribution. However, when 

simultaneously scheduling tasks and services, the schedulers 

interact with each other and influence each other’s decisions. 

These effects will be studied and quantified within this thesis 

and the schedulers will be designed to avoid unstable behavior. 

4. Conclusion 

 In this thesis, scheduling strategies for both application tasks 

(depending on data location and availability) and operating 

system services will be developed. The cost of reconfiguration 

in both task and service placement will be evaluated and will 

serve as a metric for the scheduler. Thereby, local and global 

performance of the system should be optimized. 
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