
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

492

Abstract: This paper presents an overview on scheduling of

operating system services.

Keywords: Operating System Services

1. Introduction

While modern applications are often multithreaded, the

manual implementation of concurrent programs is inconvenient

and error prone. One way to ease the implementation of such

programs is to specify them as a set of tasks in data- or

workflow graphs. These graphs describe the individual tasks,

causal dependencies and data dependencies between them.

Once all dependencies of one task are satisfied, it can be

executed. Thereby, the order of execution is decoupled from the

implementation of the program, which enables the underlying

scheduler to exploit parallelism more efficiently. For its

execution, a program relies on services offered by the operating

system like, e.g., memory management, thread management or

I/O. In order to utilize these services, applications use system

calls. These transfer control from user space (application) to

kernel space (operating system). Traditionally, these system

calls are executed synchronously on the CPU core, where the

system call was invoked by the application. This execution

model comes with two major drawbacks:

1) The invoking task is blocked while the system call is

executed and

2) Due to the execution of different types of system calls on the

same CPU core, caches are overwritten when switching

between them. Modern microkernels like Fiasco [1] and

MyThOS [2] use message passing as a communication

method between different kernel instances running on

different CPU cores or even different nodes in a data center.

Therefore, they are able to support system call forwarding,

which solves the problems mentioned before and works as

follows: When an application uses a system call, the local

CPU core jumps to kernel mode and executed the respective

system call handler. This handler function forwards the

system call to another suitable OS instance running on a

different CPU core and returns control to the application.

Thereby, blocking is avoided as much as possible.

Afterwards, the result of the system call can be fetched by

the application asynchronously. By routing all system calls

of a specific type to one or few dedicated CPU cores, the

caches on these cores stay populated with related data,

which even helps to speed up the execution of the system

calls themselves. However, it is currently unclear which

cores should process which system calls and thereby offer a

specific service. Services like memory management can be

executed by a single core or, in the case of distributed shared

memory, by a central node in the cluster. This strategy may

lead to high load on that core and therefore high waiting

times for the system call’s result depending on the behavior

of the application and the size of the computing cluster. This

can be solved by replication of the respective service, which

in turn leads to communication overhead due to

synchronization and consistency overhead between the

service instances. Therefore, the operating system requires

a service placement system to determine the optimal

placement and replication strategy for the service instances

for each system call. It should be able to determine a

mapping of service instances (processing a specific system

call) to CPU cores. This decision should build upon

information made available from the application and

collected during its execution.

2. Approach

 In this work both the task mapping infrastructure (task

scheduler) and a system for OS service placement (service

scheduler) are developed. Due to different coherency levels

(e.g. shared cache, shared memory, different nodes) and

heterogeneous hardware (e.g. CPU, GPU), a hierarchical task

scheduler was selected, where the hierarchy levels correspond

to different coherency levels of the computing infrastructure,

i.e., cluster, node, shared memory, shared cache. This task

scheduler assigns tasks from an application’s flow graph to

computational resources depending on (a) location of the input

data, (b) its availability, (c) the expected runtime of the task and

(d) the location of required operating system services. To

determine whether a task is ready for execution, its data

dependencies have to be evaluated. From the application’s

perspective this is a difficult task, since the location of data is

not transparent to the application. Therefore, the task scheduler

developed in this thesis will be integrated into the operating

system. It therefore can more efficiently check dependencies,

since data mapping and memory layout are available. The

dependencies of tasks upon specific operating system services

(i.e. the information weather they may be called) are defined

explicitly in the task description and can be extracted by the

compiler. This information is used by the task scheduler for its

Scheduling of Operating System Services

Tarun1, Ashish Sharma2, Shivam Kesarwani3, Kaushal Kumar4

1,2,3Student, Department of Computer Science and Engineering, B. B. D. I. T, Ghaziabad, India
4Assistant Professor, Department of Computer Science and Engineering, B. B. D. I. T, Ghaziabad, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

493

initial placement decision. In many fields, e.g. HPC, tasks are

executed iteratively. In the majority of iterations, they exhibit

similar behavior, e.g. a task may always reserve memory in the

beginning and release it before terminating. Therefore, the calls

of tasks to OS services can be predicted in terms of patterns. In

order to identify these patterns all system calls have to be

monitored. For this purpose, each task is assigned an ID either

by the developer or the compiler. If two tasks have the same ID,

they will execute the same function. This ID is used by each

service instance to record the number of accesses per task ID

over a given time frame. Using this information, the service

scheduler can then determine affinities between services and

task IDs. These are then used to place new tasks close to the

services they will frequently use or replicate services to be more

locally available to such tasks. In this work, tasks are

considered to behave similarly across many executions.

Therefore, system call patterns do not change rapidly, but they

can be better approximated by observing additional executions.

If the response time of a service instance is too high, it may be

either overloaded or located too far from the tasks using it. In

this case the service scheduler has to consider different options.

While the replication of this service adds synchronization and

consistency overhead, the migration of the instance closer to the

tasks using it may avoid this overhead. However, depending on

the behavior of the application’s tasks, replication may improve

the overall performance of the system. The costs of both

decisions, including reconfiguration cost, are evaluated by the

service scheduler in order to find an optimal solution.

3. Challenges

 Although, many tasks, e.g. in HPC, exhibit similar runtime

over multiple invocations it may vary between iterations or

change entirely based on input data. On the other hand, the task

scheduler requires information about the workload of a task to

be able to schedule successive tasks accordingly. Therefore, a

suitable estimation of a task’s runtime has to be found. This

could be, e.g., exponential smoothing of previous runtimes.

Based on input data tasks may exhibit entirely different

behavior. However, this effect is expected to be negligible,

since it often occurs at loop borders, which only make up a

small fraction of the invocations.

 Similar considerations have to be taken for the system call

behavior of tasks. The frequency of system calls may evolve

over time and change rapidly in some invocations. This is again

compensated by exponential smoothing.

One major challenge is the mutual dependency of the two

schedulers. Given an operating system configuration with fixed

service instances, the task scheduler can determine an optimal

task schedule based on this OS configuration. In turn, the

service scheduler can determine an optimal service placement,

depending on a fixed task distribution. However, when

simultaneously scheduling tasks and services, the schedulers

interact with each other and influence each other’s decisions.

These effects will be studied and quantified within this thesis

and the schedulers will be designed to avoid unstable behavior.

4. Conclusion

 In this thesis, scheduling strategies for both application tasks

(depending on data location and availability) and operating

system services will be developed. The cost of reconfiguration

in both task and service placement will be evaluated and will

serve as a metric for the scheduler. Thereby, local and global

performance of the system should be optimized.

References

[1] B. Döbel, H. Härtig, and M. Engel. Operating System Support for

Redundant Multithreading. In Proceedings of the Tenth ACM

International Conference on Embedded Software, EMSOFT ’12, pages

83–92, New York, NY, USA, 2012. ACM.

[2] R. Rotta, J. Nolte, V. Nikolov, L. Schubert, S. Bonfert and S. Wesner,

"MyThOS — Scalable OS Design for Extremely Parallel

Applications," 2016 Intl IEEE Conferences on Ubiquitous Intelligence &

Computing, Advanced and Trusted Computing, Scalable Computing and

Communications, Cloud and Big Data Computing, Internet of People, and

Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),

Toulouse, 2016, pp. 1165-1172.

