
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

252

Abstract: We propose a chain compilation in which the compiler

is not limited to a fixed pre-defined instruction set here the

application can generate application specific custom instructions

and synthesize them in FPL. We compare the FPGA and CPLD

respectively and the CPLD core that implements the RFU based

on the Philips XPLA2 architecture. Why XPLA2 instead of FPGA.

Also here we are proposing about 40% more speeds for the

encryption algorithms using the RFU-extended CPU can achieve.

When compared to the standard CPLD CPU core alone.

Keywords: FPGA, CPLD, RFU, FPL.

1. Introduction

Microprocessors have a fixed limited instruction set on to

which application program must be mapped by the compiler.

instructions are hard wired and executed as ALU’s function

units. Performance could be considerably improved the

compiler could define custom instructions specific for the

application that needs to be run. in order to allow this

microprocessor should feature reconfigurable functional unit

able to implement and execute the different custom instruction

at compile time.as a role RFU are implemented in FPL (Field

programmable logic). RFU opens new degree of freedom, since

it can define custom instructions on per application at hand.

The potential of the possibility developed a compiler driven

approach for integrating RFU based custom instructions. The

approach targets embedded systems. compiler time analysis

aims at encoding multiple custom instructions in a RFU

configurations. the main objective is to reduce the FPL

overhead reconfigurations without the complex run time partial

reconfigurations schemes as used in previous work which is too

costly in embedded systems. We are utilizing CPLD

architecture as our RFU which makes way for numerous

advantages with respect to FPGA.

2. Related works and applications

A. FPGA working

Its type of device that is used in electronic device. FPGA is

semiconductor device which contain programmable logic

blocks and interconnection circuits. In this algorithm hardware

accelerators, alternatively speed-up the performance and lower

the power consumption. The main aim of this is conversion of

C code to the static dataflow machine designed using FPGA.

The result of this is an newer alternative of the development of

hardware accelerators, with good performance and lower power

consumption. The dataflow based accelerators are a solution for

the increasing the computational power. The FPGA are very

highly customizable, and this provides the perfect hardware

development for different needs, beyond and also have a very

low power consumption the development of FPGA is also

responsible for the resumption of research in dataflow

architecture.

Working:

 Data flow computation.

 Dataflow graph generation.

In the data flow computation, the node is acts as an element

and the arc is a connection between two elements. A data and

control bus are used to perform the communicational operations

and performing a traditional operator like add, sub, mul, div etc.

In the data graph generation, the software is usually made for

using a specific compiler and ANSI C. In this the intermediate

representation is generated. This is based on three address

codes(3AC). after the IR generation, a dataflow graph is

generated for this and each operator output is computed and

verified. Dataflow application on each run the compiler must

insert data in a FIFO structure.

B. Application

 FPGAs have been accepted quickly over the past few

years

 There are large number of application like random

logic SPLDs device controllers and filtering

 They provide solution for video surveillance, motor

control, machine vision.

 They are used in custom computers

 It provides a combination of highly parallel low-cost

computation.

3. The architecture

 Here we develop a method and RISC micro architecture

for improving the processes performance in embedded systems

applications by the custom RFU based instructions avoiding the

disadvantages mentioned in section [2].

1. we reduce the overhead caused by the latency

reconfigurations of FPL resources, here we still are

able to avoid the run time partial reconfigurations

which hence in increased hardware cost and

complexity.

2. All the hardware synthesis is hidden from the

RFU based CPLD Compiler Approach

S. K. Viswanath1, M. Dhanaraj2, C. Y. Santhosh3, Sini Anna Alex4

1,2,3Student, Dept. of Computer Science and Engg., M. S. Ramaiah Inst. of Tech., Bangalore, India
4Assistant Professor, Dept. of Computer Science and Engg., M. S. Ramaiah Inst. of Tech., Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

253

programmer by the means of a smart compiler.

Our proposed theory consists of encoding multiple custom

instructions in a single RFU thus decreasing number of times

RFU must be reconfigured. RFU instruction set is defined as a

register-register operation with one specific opcode which is of

six bits. below we illustrate standard RISC register-register

encoding format.

Fig. 1. Encoding format of RFU instructions

Our architecture feature one extra functional unit in parallel

with ALU. The CONF signals input reconfigurations control

unit, which is attached to CPLD core which controls the loading

of different configuration codes this is what makes our method

different, moreover it is the DEC signals that directly go to the

CPLD core and define which of the custom multiple instruction

which are encoded in the given configurations is to be executed.

The CPLD configuration itself features on instructions decoder

capable of interpreting the DEC signals and the pipeline register

is added to buffer the CONF and DEC in between pipeline

stages.

Fig. 2. Proposed architecture

Fig. 2, shows the possible block representation of our

architecture, multiplexers driving pipeline registers controlled

by opcode bits are omitted. Only the relevant signals for

register-register operation are shown, the RFU instruction never

incorporates the immediate value or addresses but its operands

must be derived after the bypassing objects as mentioned in fig.

2.

4. RFU Based CPLD

To define the embodiment for our CPLD we will consider

N=4 from fig. 1 and fig. 2 and w=32 from fig. 2 which is 32-bit

architecture fig 3 shows the CPLD core it is the stripped down

version commercial SRAM based XPLA2 device. To logic

blocks run the 36 input signals each from LZIA (low zero power

interconnect array) which is cross points switch with very low

power consumption. The inputs for LZIA come from to 32 input

pins taking the signals DEC. Each logic block as 16 output pins

which total 32 output bits of the result operand the internal

block diagram of logic is shown in fig. 4.

The addition of the PAL and PLA arrays in logic block makes

way for building complex logic functions with single pass

through array each of the output pin as four dedicated product

terms from the Pal array which is connected to it so the total of

36 PT’s can be used to run a single result bit. PLA array

provides extra needed PT’s without taking or stealing terms

from the neighboring pins. If PT’s were to be taken from the

neighboring pins this pins cannot be used.

The PAL/PLA combination makes way for PLA PT sharing

among different macro cells. This increases the density

effectiveness of the device and allows for larger and more

complex functions implementations. Additional features of this

CPLD architecture is its predictable timing model the delay

depends only on whether or not PT’s from PLA are used

 In case only Pal terms are used the delay associated

TPD_PAL includes a pass through LZIA and PAL.

 Second term from PLA are used the delay associated

called TPD_PAL as a pass through the LZIA and PAL.

Fig. 3. CPLD core

Fig. 4. Logic block

We can now see the advantage of using regular CPLD

structure in RFU however complex its function needs to be

provided it fits in the resources the timing is limited to

TPD_PLA, while using more PT’s from the PLA the

complexity of the design increases without effecting the timing

this is important when taking in to account that an arbitrary

number of custom instructions must be encoded in to a single

configuration and RFU should execute within the stage of RISC

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

254

pipeline this type of regularity in timing model cannot be

achieved through regular FPGA architecture. We estimate

RFU will take 4mm^2 of silicon in C075 this compare to Philips

PR3930MIPS processor in the same 0.35micro-meters

processes RFU is very meager investment in silicon which is

targeted more cost effective for certain embedded applications

larger than caches or higher clock frequencies.

5. Conclusion

We have presented a new compilation an architecture

approach for RFU extended reconfigurable RISC cup’s this

method targets embedded systems and also aims at being more

cost efficient in certain application then increased cache size or

clock speed. Multiple instructions automatically generated by

the application code of a smart compiler this could be encoded

in a single RFU configuration the instruction decoding part was

performed at a later pipelining stage, during execution in RFU

by this method we achieved the objective of reducing the

reconfiguration overhead of RFU based CPU’s, it has allowed

for optimized usage of programmable logic recourses. This

complex and costly schemes are hard to justify in the applied

embedded domains where simplicity and reliability

This approach helps in efficient implementation of bit level

manipulation which are common in encryption algorithm by

achieving speeds more than 40 % compare to normal RISC

without RFU. This opens a new degree of freedom for

encryption algorithm writers. They need not restrict themselves

to blocks of bit manipulation but now freely use bit log

computations.

References

[1] W. C. F. Cameron and Kirk, “The Green500 List: Encouraging

Sustainable Supercomputing,” Computer, vol. 40, no. 12, pp. 50–55,

2007.

[2] J. Teifel and R. Manohar, "An asynchronous dataflow FPGA

architecture," in IEEE Transactions on Computers, vol. 53, no. 11, pp.

1376-1392, Nov. 2004.

[3] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast

unfolding of communities in large networks,” J. Stat. Mech. Theory Exp.,

vol. 2008, no. 10, P. 10008, Oct. 2008.

[4] A. Duran, J. Corbalan, and E. Ayguad ́ E, “Evaluation of OpenMP ́task

scheduling strategies,” in International Workshop on OpenMP. Springer,

2008, pp. 100–110.

[5] J. Ahn and K. Choi, "Isomorphism-Aware Identification of Custom

Instructions with I/O Serialization," in IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 32, no. 1, pp. 34-

46, Jan. 2013.

