
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

353

Abstract: In this paper, a compiler-compiler for visual

languages and a project for compiler that maps program loops

onto a processor with programmable accelerator is presented. To

translate schemas into textual representation as well as into

programs representing the deep meaning of schemas a compiler-

compiler framework has been designed for building visual

programming environments. Here a large part of the framework

is needed for support of interactive usage of a visual language. The

processor with programmable architecture could be a system on a

chip containing regular computational cores as well as a

programmable circuit. The regular ones differ from compiler

under study a driver library for data transfer between a CPU and

accelerator as well as for the presence of a converter from C to the

hardware description language.

Keywords: Compiler, programmable accelerator

1. Introduction

In this paper, the development of a compiler project from C

to a processor with programmable accelerator is presented. A

processor with programmable accelerator allows adjusting the

architecture to the program being optimized. With a

reconfigurable accelerator, that particular architecture could be

generated which is convenient for the current loop or loop nest.

It could be SIMD, MIMD, pipeline, multi-pipeline, or other

computational architecture. There are no direct analogs to the

suggested project, the methods of programming reconfigurable

systems using high-level languages are known from different

High-Level Synthesis tools. Vivado HLS (uses source code

programs to guide synthesis process), Catapult HLS, Impulse

C, C2H (discontinued), C-to-Verilog (discontinued), and many

others are the examples.

2. Deep and Shallow linguistics of visual languages

For rapid development of domain-specific visual languages,

compilers of programming languages are used as a tool. On the

semantic side, we are able to specify precisely shallow

semantics which produces a textual representation of schema

without any loss of essential information included in a schema.

To generate an executable code from a schema, using in essence

an extension of attribute grammars to schema languages, we

have implemented deep semantics of schema. The framework

differs from the earlier ones by its capability to translate a visual

sentence in principle into an arbitrary code using semantic

programs run as implementations of attribute dependencies.

The compiler-compiler COCOVILA supports a language

designer for the visual languages, including the specification of

graphical objects, syntax and semantics of the language and

provides the user with a visual programming environment,

which is automatically generated from the visual language

definition.

3. Editor Class

Class Editor and Scheme Editor are the two components of

COCOVILA. Class Editor is the tool for a visual language

developer that support the language designer in defining the

visual aspects of class. Schema Editor uses the results of a

visual language development which are stored in a package.

The user interface is automatically generated from the language

definition given in Class Editor.

Fig. 1. Class editor

4. Compiler

In our framework the deep semantics has been implemented

on Java platform in such a way that a synthesized program

becomes a method in a new Java class. Methods of a class

representing the object or by equations are given by functional

dependencies between attributes of an object. The usage of

methods and equations as functional dependencies are specified

COCOVILA for Visual Languages and a

Compiler for Processor with Programmable

Accelerator

Akuleti Harshini Reddy1, H. G. Anil Kumar2, Sini Anna Alex3

1,2Student, Dept. of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India
3Assistant Professor, Dept. of Computer Science and Engg., Ramaiah Institute of Technology, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

354

in a textual specification added to every class that can represent

an object in a scheme. Attributes of objects of a scheme are not

components of the class of the object are an important point of

the implementation.

Fig. 2. An outline of a processor with reconfigurable accelerator on one

chip

5. Demo Packages

Several packages have been developed in this framework: a

package for calculating loads and kinematics in a gearbox, a

package for analyzing logical schemes, a package for designing

mechanical drives etc. Rapid prototyping of visual languages

can be quite effective in the framework. The implementation of

the functional aspects of the class diagram editor was under 100

lines of Java code, and specification of the graphical and

interactive aspects was done visually easily in Class Editor is

an example.

6. Peculiarities of a Compiler for a Processor with

Programmable Architecture

The algorithms for automatic mapping of a high-level

language onto multi-pipelined architectures is presented. In this

paper, automatic generation of multi-pipelined electronic

circuits and mapping high-level programs onto them are being

discussed. The compiler contains many elements which are not

inherent to regular optimizing compilers. On the base of

Optimizing Parallelizing System, the compiler is developed. It

would allow performing source code optimizations before

generating code for the accelerator. It would be difficult to

generate VHDL code for a pipeline system from a low-level

register-based internal representation, such as LLVM IR of

Clang compiler or Gimple and RTL of GCC compiler family.

7. An Algorithm of Mapping Loops onto a Processor

1. An innermost one-dimensional loop is being found.

2. A check is being performed to determine whether all

index variables of this loop affinely depend on its counter.

If not, the loop will be executed on the CPU and will not

be transferred to the accelerator. Exit. Otherwise, proceed

next.

3. A dependency graph is being computed.

4. It is being checked which of the classes the loop under

consideration.

5. An HDL description of a circuit supporting execution of

loops with the given class is being generated.

6. The programmable accelerator is being burned with the

compilation result of the HDL description.

7. The optimized loop in the initial program is being

replaced with a call to the programmable accelerator.

8. Classification of One-Dimensional and Multi-

Dimensional Loops

A special attention is being paid to loops while optimizing a

program. A classification of program loops and loop nests,

based on information dependencies analysis, is required in

order to develop an algorithm of mapping programs onto a

processor with reconfigurable accelerator. The classification

should determine for which loops a SIMD, MIMD, or pipeline

architecture should be generated. Parallelizing loops with

bodies containing many statements could be reduced to

parallelizing loops with a few statements inside, using “loop

splitting” transformation.

A problem of accelerating (parallelizing) loops which do not

allow splitting, in particular, with only one assignment

statement.

9. Conclusion

As a result of implementing the current project in this paper,

the performance of high-level programs which allow mapping

onto multi-pipeline architecture should increase, and the time

for developing parallel-pipelined programs should decrease.

References

[1] G. Costagliola, A. De Lucia, S. Orefice, G. Tortora. Automatic

Generation of Visual Programming Environments. IEEE Computer,

28(3):56-66, 1995.

[2] J-P. Tolvanen, M. Rossi. Metaedit+: Defining and Using domain-Specific

modeling languages and Code Generators. In: OOPSLA 2003

demonstration, 2003.

[3] J. de Lara and H. Vangheluwe. Defining visual notations and their

manipulation through meta-modelling and graph transformation. Journal

of Visual Languages and Computing, 15(3- 4):309-330, 2004.

[4] M. Matskin and E. Tyugu. Strategies of structural synthesis of programs

and its extensions. Computing and Informatics, 20:1-25, 2001.

[5] Bambu. URL: http://panda.dei.polimi.it/?page_id=31

[6] Yosi Ben-Asher, Nadav Rotem, and Eddie Shochat. Finding the Best

Compromise in Compiling Compound Loops to Verilog. J. Syst. Archit.,

56(9):474–486, September 2010.

[7] João M. P. Cardoso and Pedro C. Diniz. Compilation techniques for

Reconfigurable Architectures. Springer US, 2009.

[8] Boris Ya. Steinberg, Denis V. Dubrov, Yury Mikhailuts, Alexander S.

Roshal, and Roman B. Steinberg. Automatic high-level programs

mapping onto programmable architectures. In Victor Malyshkin, editor,

Parallel Computing Technologies, volume 9251 of Lecture Notes in

Computer Science, pages 474–485. Springer International Publishing,

2015.

[9] Tools-Impulse accelerated Technologies.

http://www.impulseaccelerated.com/tools.

[10] Roman B. Steinberg. Mapping loop nests to multi pipelined architecture.

Programming and Computer Software, 36(3):177–185, May 2010.

