
International Journal of Research in Engineering, Science and Management

Volume-3, Issue-5, May-2020

www.ijresm.com | ISSN (Online): 2581-5792

1170

Abstract: The present paper presents a novel way of learning for

the students using a variety of features leveraging the competitive

nature of students via the use of weekly and monthly ranking,

leaderboard and special mention on the platform on achieving

something. The platform is comprised of two modules – Learning

and Contest activities. The existing platforms were having the

above modules as part of separate applications which created

issues mainly with respect to tracking. The proposed application

also has a host of features such as creation of meetings in Microsoft

Teams and Zoom, conducting other activities such as Daily Scrum

Meetings, Assessments etc. The tech stack for the application

comprises of ReactJS, Spring Boot, Docker, AWS, Git and testing

conducted with Junit5, React Testing Library and Gatling –

Backend performance testing, Lighthouse- Frontend Performance

testing.

Keywords: Gamification, Tech stack, SCRUM, AWS.

1. Introduction

The application is an in-house application developed in a

software development company to be used to train the incoming

interns and new hires which also had the added benefit of

making the onboarding process smooth and less time-

consuming. The gamification aspect of the application is what

makes it unique and ensures that no interest is lost by arousing

the competitive nature of the new hires through a system of

leaderboard and rankings.

The application is also web-based hence it would involve front

end and backend along with cloud hosting. Hence this

Gamification Learning Program was a full stack project which

uses different technology stacks.

2. Problem Definition

To provide a platform where the learning is made in an

extremely engaging manner. The application also provides a

gamification aspect where assessments and learnings that have

been completed within time are being rewarded extra marks.

This helps in engaging a student to learning and will take efforts

to make sure that he submits his assessments on time and also

the courses which are assigned to user.

3. Objectives

Customer Experience: The application should provide an

enriched look and feel that could make an interactive user

experience for the users that could bind them to the application

and help them continue the learning process on a regular basis.

Scalable Application: The application should be completely

scale-able to ensure that it could be developed in any of the

regions where the company can ensure that the growing number

of users could be added at any point of time and also extra

functionality could be added [4].

Availability: The application availability should be high i.e.

should be operational, functional and usable for competing or

fulfilling a user’s and business requirement [6, 7].

Robustness and Resilience: The application should be robust

[5] to handle all kind of errors and handle them in the correct

possible manner. In case of failure the alerting method should

be present and a possible recovery procedure should be in place

that could help the application in.

4. Design of Architecture

The application project was based on Spring Framework and

followed the Netflix OSS Architecture. Spring Boot helped in

the setting up of the given architecture and the various

components were the key components. Along with the MVC

layered architecture [1] was also followed which helped in the

flow of data via controllers, transactions services, repository

layer and finally the database. The components listed in the

above diagram are explained briefly as followed,

Configuration Server: Spring Cloud Config Server provides

an HTTP resource-based API for external configuration (name-

value pairs or equivalent YAML content). The server is

embeddable in a spring application. Pairs or equivalent YAML

content). The server is embeddable in a Spring Boot

application, by using the @EnableConfigServer annotation.

Config Server files can either be stored in local files, Git files

or environment setup hosted on server.

Zuul Server: Zuul Server is a gateway application that

handles all the requests and does the dynamic routing of micro

service applications. The Zuul Server is also known as Edge

Server. For example: /api/user is mapped to the user service and

/api/products is mapped to the product service and Zuul Server

dynamically routes the requests to the respective backend

application. The Zuul Server is also enabled with a load balance

Gamification Based Learning

Akarshan Agarwal1, Shreevaths K. Satish Rao2*, B. M. Mahendra3

1,2Student, Department of Electronics and Communication Engineering, R. V. College of Engineering,

Bangalore, India
3Assistant Professor, Department of Electronics and Communication Engineering, R. V. College of Engineering,

Bangalore, India
*Corresponding author: shreevathsr@gmail.com

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-5, May-2020

www.ijresm.com | ISSN (Online): 2581-5792

1171

which helps in load balancing of calling and consuming

microservices. This load balancing can be of client side

balancing as well as server side balancing. Zuul is auto enabled

with client side load balancing know as Ribbon Client Load

Balancer. Feign Client It is a declarative HTTP client developed

by Netflix. Feign aims at simplifying HTTP API clients.

Eureka Server: The Eureka server is nothing but a service

discovery pattern implementation, where every micro service is

registered and a client micro service looks up the Eureka server

to get a dependent micro service to get the job done. The Eureka

Server is a Netflix OSS product, and Spring Cloud offers a

declarative way to register and invoke services by Java

annotation.

5. Result

The application is based on TDD approach. The sonar is

implemented as part of deployment service, this leads to

coverage of 91.2% with 39 code smells as shown in Fig. which

ensures code quality and that new code added each iteration has

been thoroughly tested before deployment.

The application is been deployed on AWS which offers high

availability across different zones. It is monitored in real-time

using ELK stack. The OAuth 2 is implemented as part of

security which handle 250 concurrent request at a time. All the

requests involved in the application occur over TLS which

provide security for all communication involved. The data

integrity is ensured by following commit-all or none approach

along with data normalization. The delivery service of the

application (Kafka) has a scheduler module which runs round

the clock and ensures guaranteed delivery of messages in the

event of failure. The front-end performance has been tested

with lighthouse and is within acceptable range.

Kafka uses a binary TCP-based protocol that is optimized for

efficiency and relies on a “message set” abstraction that

naturally groups messages together to reduce the overhead of

the network roundtrip. The consumer and producer APIs build

on top of the Kafka messaging protocol and offer a reference

implementation for Kafka consumer and producer clients in

Java. The underlying messaging protocol is a binary protocol

that developers can use to write their own consumer or producer

clients in any programming language.

Assigning the learning or assessment Functionality:

The main base of the application is to provide different type

of activities to a user such as a learning course, an assessment

or a webinar. The admin gets the access to create these types of

activities, provide details to it and also assign them to an

individual user, an entire batch else an entire category of user.

Along with it the admin can also assign activities from Udemy

and contest from Hackerank which will be integrated in the

system. The admin can assign some assessment rules to a

contest which will help in the leaderboard structure.

Notification Management:

The entire system is connected to few system generated

emails that is achieved with the help of the architecture

explained. Email Notifications are sent out whenever one of

these event is triggered. The mail system is robust and real-time

[2]. This helps in alerting mechanism to be implemented. When

a new user is added, his details are passed through the mail.

Alerts on changing the password is provided as well. The

functionality of changing password whenever a user is unable

to remember his/her password is also provided with the help of

reset links [3, 9]. The admin also gets an option to alert a user

when- ever he/she is dormant for a period of time and have not

started the activity assigned to them

OAuth 2.0:

OAuth Server acts as the authentication and the authorization

server for the entire application. The method to save the

credentials in encrypted format was done with the help of

BCrypt Encoder with 12 rounds of hashing. The tokens were

not stored and were generated in-memory. The code generated

at the beginning is a one-time code which improved the security

further. SSL was enabled at the browser side which helped in

prevention of network leakage and provide the secure layer of

https. This entire flow was developed and implemented with the

help of Spring Security and Spring OAuth.

6. Conclusion

 This paper presented an overview on gamification based

learning.

References

[1] R. M. Meloca, R. Re, and A. L. Schwerz, “An analysis of frameworks for

microser- vices,” in 2018 XLIV Latin American Computer Conference

(CLEI), IEEE, Oct. 2018.

[2] N. N. J. Kreps and J. Rao., “Kafka: A distributed messaging system forlog

pro- cessing,” 2011.

[3] M. Argyriou, N. Dragoni, and A. Spognardi, “Security flows in OAuth

2.0 frame- work: A Case study,” in Lecture Notes in Computer Science.

[4] V. Armenise, “Continuous delivery with Jenkins: Jenkins solutions to

implement Continuous delivery,” in 2015 IEEE/ACM 3rd International

Workshop on Release Engineering, IEEE, May 2015.

[5] D. Merkel, Docker: lightweight Linux containers for consistent

development and deployment. 2014.

[6] B. S. Scott Chacon, Pro Git. APRESS L.P., Dec. 24, 2014.

[7] Jenkins, “Jenkins user documentation,” https://jenkins. Io/doc/

[8] D. Inc. “Docker documentation.” https://docs.docker.com/...

[9] Okta, “Getting started - oauth,” https:// oauth.net/getting-started/

[10] AWS, “AWS documentation.”

[11] “Apache kafka Documentation,”

https: kafka.apache.org/documentation/...

