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Abstract: In this research paper we begin with study of family 

of n dimensional hyper cube graphs and establish some properties 

related to their distance, spectra, and multiplicities and associated 

eigen vectors and extend to bipartite double graphs[ 11]. In a more 

involved way since no complete characterization was available 

with experiential results in several inter connection networks on 

this spectrum our work will add an element to existing theory. 

 

Keywords: Middle cube graphs, Distance-regular graph, 

Antipodal graph, Bipartite double graph, Extended bipartite 
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1. Introduction 

 An n dimensional hyper cube nQ [24] also called n-cube is 

an “n” dimensional analogue of Square and a Cube. It is 

stopped up dense arched figure whose 1-skelton comprises of 

gatherings of inverse equal line fragments adjusted in every 

one of spaces measurements, opposite to one another and of 

same length. A factor is a hypercube of dimension zero. If 
one strikes this factor one-unit length, it will sweep out a line 

segment, which is the measure polytope of dimension one. If 

one strikes this line phase its size in a perpendicular course 

from itself; it sweeps out a two-dimensional square. If one 

strikes the rectangular one-unit size in the route perpendicular 

to the plain surface it lies on, it will generate a three-d cube. 

This can be generalized to any variety of dimensions. For 

example, if one strikes the dice one-unit size into the fourth 

dimension, it generates a four-dimensional measure polytope 

or tesseract. 

 The group of hypercubes is one of only a handful barely 

any normal polytopes that are spoken to in any number of 
measurements. The dual polytope of a hypercube is called a 

cross-polytope. 

 A hypercube of dimension n has 2n "sides" (a 1-

dimensional line has 2 end points; a 2-dimensional square has 

4 sides or edges; a 3-dimensional cube has 6 faces; a 4-

dimensional tesseract has 8 cells). The number of vertices 

(points) of a hypercube is 2n (a cube has 23 vertices, for 

instance). 

 

 

 

 
The number of m-dimensional hyper cubes on the boundary 

of an n-cube is 

 

  For example, the boundary of a 4-cube contains 8 cubes, 24 

squares, 32 lines and 16 vertices. 

A unit hyper cube is a hyper cube whose side has length 1 
unit whose corners are 
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 2n
Points in 

nR  with every organize equivalent to 0 or 1 
termed as measure polytope. 

 The correct number of edges of cube of dimension n is 
1* 2nn 
 for example 7-cube has 

67 * 2 =448 edges. 

A. Dimension of the cube 

 1 2 3 4 5 6 

No. of vertices 2 4 8 16 32 64 

No. edges 1 4 12 32 80 192 

 Here we define adjacency matrix of n cube described in a 

constructive way. 
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 Since n  nQ  is n regular bipartite graph of 2n
 vertices  

characteristic vector of subsets of [n] {1,2,3,...n}  

vertices of layer kL corresponds to subsets of cardinality k. 

 If n is odd n=2k-1,the middle two layers 1,k kL L  of nQ

with 1,k knc nc  vertices forms middle cube graph M kQ  by 

induction. 

 As M kQ  is bipartite double graph which is a sub graph of 

n-cube nQ  induced by vertices whose binary representations 

have either k-1 or k no. Of 1’s is of k-regular as shown in 

figures below. 

 The middle cube graph MQ2 as a subgraph of Q3 or as the 

bipartite double graph of O2 = K3. 

 

 We start with spectral properties of bipartite double graphs 

[17], [18] and extend for study of eigen values of M kQ . 

B. Bipartite double graph 

  Let H= (V, E) be a graph of order n, with vertex set V = 

{1, 2…. n}. Its bipartite double graph ˆ1 , 1 H    H = 

( ,V E ) is the graph with the projected vertex set, 

  V  = {1,2… n.1',2 ',...n'  }and adjacencies induced from 

the adjacencies in H as follows: 

'

'

E

E

i j
i j

j i




 


 

 Thus, the edge set of H  is E  = {ij' | ij E} . From the 

definition, it follows that H  

 Is a bipartite graph [24.21] with stable subsets 1V = {1, 2…. 

n}, and 2V = {1',2 ',...n'  }. For example, if H is a bipartite 

graph, then its bipartite double graphs H  consists of two non-
connected copies of H. 

 

 

 
Path p-4 and its bipartite Double Graph 

 

Graph H has diameter 2 and H  has diameter 3 

 

 If H is a  -regular graph, then H also, if the degree 

sequence of the original graph H is,  

 = ( 1 2 3, , .... n    ), the degree sequence for its bipartite 

double graph is  =( 1 2 3, , .... n    , 1 2 3, , .... n    ) 

The separation between vertices in the bipartite twofold 

diagram H can be given as far as the even  and odd distances in 

H. 

                                 

(i, j) dist (i, j)

(i, j') dist (i, j)

HH

HH

dist

dist








 

 Involutive auto morphism with no fixed boundary lines, 

exchanging vertices i and i’, the function from  

H  Onto H defined  ' ,i i i i   is a 2-fold cover. 

If  Ĥ  is extended bipartite double graph by adding edges (i,i’)f 

or each i V H   Ĥ . 

C. Notations 

 The cardinality of the graph G is n = {V} and its size is m = 

{E}.  Name the vertices using natural numbers 1,2,…, n. If i is 

adjacent to j, that is, ij E, we write i j or i
( )E

 j. The length 
between two ends is denoted by dist(I,j). We also use the 

concepts of even length and odd length between two ends, 

denoted by dist + and dist -, respectively. They are defined as 

the length of a shortest even, odd walk between the 

corresponding vertices. The set of vertices which are L-apart 

from vertex i, in view of the usual length, is 

( ) { : (i, j)l i j dist l   , hence the degree of vertex  is 

simply ( )l i . The eccentricity of a vertex is ecc(i)=

11max (i, j)
j nX dist

  max1j_n dist(i; j) and the diameter of 

the graph is D =D(G)  
11max (i, j)

j nX dist
  graph G`, G has 

the same vertex set as G and two vertices are close in G' if and 
just in the event that they are at unit distance  in G. An antipodal 

diagram G is an associated chart of measurement D for which 

GD is a disjoint association of coteries. The collapsed diagram 

of G is the chart G whose vertices are the maximal clubs. 

Let G = (V;E) be a graph with adjacency matrix A and  -

eigenvector v. Then, the charge of vertex i   V is the entry via  

v, and the equation A  .eigen values of the bipartite 

double graph [11,16] G  and the comprehensive bipartite 
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double graph Ĝ  as mappings of the eigen-values of a non-

bipartite graph G. 

 We concentrate on some more outcomes which are less 

rudimentary yet significant on spectra multiplicities of related 

eigen vectors reached out to bipartite two fold charts. 

2. Eigenvalues of the Graphs 

Definition 1. For a matrix
*m nA R , a number   is an 

eigenvalue if for some vector x  0, 

Ax =  x. 

The vector x is called an eigenvector corresponding to  . 

Some basic properties of eigenvalues are 

 The eigenvalues are exactly the numbers   that 

make the matrix A- I singular, i.e. solutions of 

det(A- I) = 0. 

 All eigenvectors corresponding to   form a subspace 

V
; the dimension of V

 is called the multiplicity of 

 . 

 In general, eigenvalues can be complex numbers. 

However, if A is a symmetric matrix ( )ij jia a , 

then all eigenvalues are real, and moreover there is an 

orthogonal basis consisting of eigen vectors. 

 The total of all eigenvalues, involving all 

multiplicities, is 

 1 1( )n n

i i i ijTr A a    
 
the trace of A. 

 The product of all eigenvalues, counting multiplicities, 

is 
1 det( )n

i i A  the determinant of A. 

 The figure of non-zero eigenvalues, including 

multiplicities, is the rank of A. 

 For graphs, we define eigenvalues as the eigenvalues of the 

adjacency matrix. 

Definition 2. For a graph G, the adjacency matrix A(G) is 

defined as follows: 

 1 ( , ) ( )ija if i j E G   

 0 ( , ) ( )ija ifi jor i j E G    

since Tr (A(G)) = 0, follows, 

The total of all eigen-values of a chart is always 0. 

The (ordinary) spectrum of a diagram is the spectrum of its (0,1) 

adjacency matrix. 

The graph on n vertices without edges (the n-coclique, nK ) 

has zero adjacency 

matrix, hence spectrum 0n
, where the exponent denotes the 

multiplicity 

Complete bipartite graphs 

The complete bipartite graph 
,m nK  has spectrum 

2,0m nmn    

More usually, every bipartite graph has a spectrum that is 

symmetric w.r.t. 

the origin: if   is eigenvalue, then also −  , with the same 

multiplicity. 

The n-cube graph (called 2n
, or nQ ) is the chart by means of  

vertices the binary 

vectors of length n, where two vectors are adjacent what time 

they be different in a single position. The 0-cube is 1K , the 1-

cube is 2K , the 2-cube is 4C . 

The spectrum of 2n
 consists of the eigenvalues n − 2i with 

multiplicity (0 )
n

i n
i

 
  

 

 

The absolute bipartite graph 
,m nK  has an adjacency matrix 

of rank 2, consequently we expect to have eigenvalue 0 of 

multiplicity n-2, and two non-trivial eigenvalues. These should 

be equal to  , because the sum of all eigenvalues is always 

0. 

We find   by solving Ax = x. By symmetry, we guess that 

the eigenvector x should have m 

Coordinates equal to   and n coordinates equal to   Then, 

( ,..., , ,..... )Ax m m n n     

This should be a multiple of ( ,..., , ,..., )x     . 

Therefore, we get m  and n   i.e. and 2mn  

and mn   

 

 

A graph   is called bipartite when its vertex set can be 

partitioned into two disjoint parts 
1 2X X such that all edges of   

meet both 
1X  and

2X . The adjacency 

matrix of a bipartite graph has the form 
0

0T

B
A

B

 
  
 

. It follow 

that the spectrum of a bipartite graph is symmetric w.r.t. 0: if 

u

v

 
 
 

is an eigenvector with eigenvalue θ, then u

v

 
 
 

 is an 

eigenvector with eigenvalue −θ.  

For the ranks one has rkA = 2 rk B. If in  = |Xi| (i = 1, 2) and 

n1 ≥ n2, then rkA ≤ 2n2, so that   has eigenvalue 0 with 

multiplicity at least n1 − n2. 

One cannot, in general, recognize bipartiteness from the 

Laplace or signless Laplace spectrum. Eg., 
1,3K  and 

1 3K K have the same signless Laplace spectrum and only the 

former is bipartite.  
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However, by Proposition below, a graph is bipartite precisely 

when its 

Laplace spectrum and signless Laplace spectrum coincide. 

A. Elementary Graphs associated Eigen values 

 
       

B. Characteristic polynomial 

Let    be a directed graph on n vertices. For any directed sub-

graph C of  that is a union of directed cycles, let c(C) be its 

figure of cycles. Then the trait polynomial 

 pA(t) =det(tI −A) of   can be expanded as 
n i

iC t  where 

( )( 1)c C

i CC    with C association over all usual heading for 

sub graphs with in- and outdegree 1 on i vertices. 

(Indeed, this is just a reformulation of the definition of the 

determinant as, 

 1 (1) ( )det sgn( ) ... n nM M M    Note that 

when the variation σ with n−i fixed points is written as a product 

of non-identity cycles, its sign is ( 1)e .where e is the number 

of even cycles in this product. Since the number of odd non-

identity cycles is congruent to i(mod 2), we have 
( .)  1( ) ( ) )i csgn     

For example, the triangle has 
0 31, 1c c   . Directed edges 

that do not occur in directed cycles do not influence the 

(ordinary) spectrum. 

The same description of ( )Ap t holds for undirected graphs (with 

each edge viewed as a pair of opposite directed edges). 

Since det( ) det( )xx

d
tI A

dt
tI A     where 

xA  is the sub-

matrix of A obtained by deleting row and column x, it follows 

that ( )Ap t is the sum of the characteristic polynomials of all 

single-vertex-deleted sub-graphs of    . 

The spectrum of the complete bipartite graph

2

, ,  0m n

m nK is mn   . The Laplace spectrum is 

1 1 1 10 , ( ) ,  ,n mm n m n    

 The main eigenvalue of a graph is also recognized as its 

spectral radius or index. The basic in sequence concerning the 

main eigenvalue of a (possibly directed) graph is provide by 

Perron-Frobenius theory as follows. 

C. Proposition 

 Each graph   has a real eigenvalue 0  with positive real 

corresponding eigen-vector, and such that for each eigenvalue 

θ we have |θ| ≤ 0 . 

The value 
0  ( ) remains same when vertices or edges are 

removed from  . 

Let    is strongly connected. Then 

(i) 0  has multiplicity 1. 

(ii) If   is primitive (strongly connected, and such that no 

cycles have a 

length equal to multiple of some integer  

d > 1), then |θ| < 0  for all 

eigen-values θ different from 0 . 

(iii) The value 0  ( ) reduces when vertices or edges are 

removed from   

Now let   be undirected. By Perron-Frobenius theory and 

interlacing we 

find an upper and lower bound for the maximum characteristic 

value of a connected graph. 

(Note that A is irreducible if and only if   is connected.) 

Out of all the connected graphs  , with non-primitive A are 

precisely the bipartite 

diagram (with period 2) is explained in the following 

proposition.   

D. Proposition 

 (i) A graph   is bipartite if and only if for each eigenvalue θ 

of  , also −θ is an eigen-value, with the same multiplicity. 

(ii) If   is connected with largest eigen-value 1 , then   is 

bipartite if and only 

if 1  is an eigen-value of  . 

Proof. For connected graphs all is clear from the Perron-

Frobenius theorem. 

That gives (ii) and (by taking unions) the ‘only if’ part of (i). 

For the ‘if’ part 

of (i), let 
1  be the spectral radius of  . Then some connected 

component of   

Has eigenvalues 
1  and 

1 , and hence is bipartite. Removing 

its contribution 

to the spectrum of  , we see by acceptance on the quantity of 
parts that all  Parts are bipartite.  

 We build up some more hypotheses stretched out on spectra 

and multiplicities and related eigen values which are reached 

out to bipartite twofold charts. 

Theorem: Let F be a field,  let R be a commutative sub ring to 
n*F n

, the set of all n *n 

Matrices over F. Let M  *mmR  , then 

                                 det  (M) = det (det (M))F F R
 

                              det  (M) = det (AD -BC).F F   
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for a bipartite twice chart feature polynomial. [13] 

We show the next theorems presentation geometric 

multiplicities of eigen value   of H   geometric 

multiplicities of eigen values   and  of H  

1 , 1    of Ĥ  

Theorem: Let H be a graph on n vertices, with the adjacency 

matrix A and characteristic, 

'

'

(1 )

( )  =
E E

i i

i j i i

j i j i

u u v

u u j v v u



 




 

 

   
 

polynomial H (x). Then, the characteristic polynomials of  

H  and Ĥ  are, respectively, 

(x) = (-1) (x) (-x),

(x) = (-1) (x-1) (-x-1).

n

H H
H

n

H H
H


  

  
 

Adjacency matrices are, in that order, 

0 O A + I
and .

0 A + I O

A
A A

A

   
    
   

 

With the above corollary  

2 2

2n

n

xI -A
(x) = det(xI ) = det = det(x I -A )

-A xI

           = det(xI  -A) det(xI + A) = (..1) (x) (-x);

n

n
H

n

n n H H

A
 

   
 

 

 

Whereas the characteristic polynomial of H


 is  

2n

2 2

n

xI -A-I
(x) = det(xI ) = det

-A-I xI

           = det(x I -(A+I ) )= det(xI  -(A+I )) det(xI + (A+I )) 

           =det((x-1)I )( 1) det( ( 1)I )

           = (-1) (x-1) (-x-1).

n n

H
n n

n n n n n n

n

n n

H H

A

A x A

  
   

 

    

 

 

Theorem: Let H be a graph and v a  -eigenvector H. Let us 

consider the vector u+ with Components 
'i iu u  = iv , u- with 

components 
i iu v  and 

'i iu v    for 1 , 'i i n   

Then, 

u   -eigenvector H  and (1 )  eigenvector H


 

u - -eigenvector H  and ( 1 )   eigenvector H


 

If the vertex i,1 i n  , all its nearby  vertices are of type j’, 

with i (E)  j.   Then 

'

(A )  =
E E

i j i i

j i j i

u u j v v u 


      

 If the vertex I’,1 i n  , all its neighboring vertices are of 

type j, with i (E)  j.  

Then 

 '

' '

(A )  =
E E

i j i i

j i j i

u u j v v u 


      

By a comparable reasoning with u 
, we obtain 

 

'

(A )  = '
E E

i j i

j i j i

u u j v u




      and 

 
'

'

'

(A )  =
E E

i j i

j i j i

u u j v u


      

0 5 0

1 4 1

2 3 2

( ) ( ) ( ) 1,

( ) ( ) ( ) 4,

( ) ( ) ( ) 5,

m m m

m m m

m m m

  

  

  







  

  

  

  

 u


 is - -eigenvector of bipartite double graph H . 

Also 1+ ,-1-  are eigen values for u 
, u 

eigen vectors of 

H


 
From the beyond information realizing an isomorphism [8, 2] 
defined by   

                            : [O ] V[MQ ]k kf V   

                                       
u u

u' u
 

is a surjection by the definition of bipartite double graph, if u 

and 'v  Are two vertices of Ok
. 

The center cube graph [MQ ]k
with D=2k-1 by above corollary 

is isomorphic toOk . 

We authenticate spectrum of  
2 1kQ 

 hold all eigen values of

[MQ ]k
, 

= (-1) (k-i) and = i

i i i       for 0 1i k    

With multiplicities 
21

( ) m( )i i

kk
m

ik
    

   
 

  

3. Conclusion 

In Verification of the above results, 
2

3

4 5

5

6 14 14

7

8 27 48 42

9

{ 2, 1 }

{ 3, 2 , 1 }

{ 4, 3 , 2 , 1 }

{ 5, 4 , 3 , 2 , 1 }

spMQ

spMQ

spMQ

spMQ

  

   

    

     

 

For uppermost degree Distance polynomials of [MQ ]k  

 p5 (3) = p5 (1) = p5 (-1) = 1 and p5 (2) =p5 (-1) = p5 (-3) = -1. 

Then, 
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0 5 0

1 4 1

2 3 2

( ) ( ) ( ) 1,

( ) ( ) ( ) 4,

( ) ( ) ( ) 5,

m m m

m m m

m m m

  

  

  







  

  

  
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