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Abstract: In the current version of industrialization i.e. industry 

4.0, implementation of AIML (Artificial Intelligence & Machine 
Learning) and Automation and Robotics are at the centre of the 
industries. Here in this project, we are implementing the concepts 
of ML (Machine Learning) to determine the tensile properties of 
low alloy steel which is one of the most used materials in the 
manufacturing industries. Generally, for determining and 
evaluating the properties of any type of steel traditional method of 
using UTM (Universal Testing Machine) is preferred, UTM itself 
is a piece of very costly equipment and it is a destructive type of 
testing method which are time consuming, labor- intensive and 
causes wastages of material. So to overcome these cons of UTM 
methods here we are using data science and machine learning to 
predict the properties of steel depending upon the composition of 
its alloying elements. With the help of available standardized data, 
we are predicting four properties which are Tensile Strength 
(MPa), 0.2% proof stress (MPa), Elongation (%), and Reduction 
in Area (%). 
 

Keywords: Low alloy steel, Machine Learning, Tensile Strength 
(MPa), 0.2% proof stress (MPa), Elongation (%), Reduction in 
Area (%), Linear Regression, Random Forest, SVM (Support 
Vector Machine), Decision Tree. 

1. Introduction 
This is a machine learning based project to predict the tensile 

properties of low alloy steel which are generally determined by 
tensile testing, which is time intensive and requires labour work 
up to a certain extent. To estimate the tensile properties of steel 
destructive testing is preferred, which is done with the help of a 
traditional UTM (Universal Testing Machine). This traditional 
approach is costly and time-consuming and it is not eligible for 
small-scale industries to afford UTM. 

A. Aim 
The primary objective of this project is to leverage data 

science and machine learning techniques to forecast the tensile 
properties of low alloy materials by utilizing standardized data 
on the weight/weight composition of different alloying 
elements at a specific temperature, along with corresponding 
estimated tensile properties. This dataset was made available by 
the NIMS (National Institute of Material Science). 

The dataset consists of 19 columns in total among which 15 
are input parameters and 4 are output parameters which are the 
tensile properties to be predicted. It contains 916 rows of data  

 
in total. Each alloy has multiple entries with variations in the 
testing temperature. 

Input parameters are, 
1) Percentage W/W of 

a. Carbon 
b. Silicon 
c. Manganese 
d. Phosphorus 
e. Sulphur 
f. Nickel 
g. Chromium 
h. Molybdenum 
i. Copper 
j. Vanadium 
k. Aluminium 
l. Nitrogen 
m. Niobium 
n. Tantalum 

2) Ceq (Carbon Equivalent Content) 
3) Temperature in degrees Celsius (°C). 
4) The output parameters to be predicted: 

a. Tensile Strength (MPa) 
b. 0.2% Proof Stress (MPa) 
c. Elongation (%) 
d. Reduction in Area (%). 

By employing diverse models and algorithms, a substantial 
level of accuracy in prediction can be attained to a certain 
degree. This project incorporates a total of four algorithms and 
conducts predictions through eight models. The algorithms 
utilized encompass Linear Regression, Decision Tree, Random 
Forest and Support Vector Machine (SVM). Principal 
Component Analysis (PCA) is used as feature extraction 
method. The eight models employed are as follows: Linear 
Regression, Decision Tree, Random Forest, SVM (without 
PCA), as well as Linear Regression, Decision Tree, Random 
Forest, SVM (with PCA). 

The results obtained are satisfactory and reliable with the 
highest accuracy of 95.54 in predicting Tensile strength via the 
Decision Tree Model With PCA. 

2. Methodology 
The data pre-processing step involved cleaning and checking 
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for skewness, null values or anomalous data. Any data that 
deviated from a normal distribution was fixed, outliers were 
either rectified or removed, and the range of independent 
variables was normalized. Subsequently, the dataset was 
partitioned into two segments, wherein one portion was 
allocated for the purpose of training the Machine Learning 
(ML) model, while the remaining portion served as a testing set 
to measure the performance of the trained model, maintaining 
an 80%-20% ratio. 

To identify the most suitable ML algorithm for the dataset, 
four different techniques were tested: 
1) Linear Regression 
 Linear regression is a statistical modelling approach that 
seeks to determine a linear association between a response 
variable and one or multiple predictor variables. It assumes a 
linear equation in the following format: 

 
𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1 1 + 𝛽𝛽2 2 + . . . + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 
 

where, the line is determined by an intercept (β0) and 
coefficients (β1, β2, ..., βn) assigned to each independent 
variable (X1, X2, ..., Xn). The goal of linear regression is to 
figure out the most accurate values for these coefficients, 
allowing us to make predictions or draw conclusions about how 
the variables are related. This is done by minimizing the 
difference between the observed values and the values 
predicted by the line. 
2) Random Forest 
 Random Forest is a highly effective algorithm for making 
predictions by combining multiple decision trees. It finds 
extensive application across diverse domains such as data 
science and machine learning. 
 In a Random Forest, a group of decision trees or a forest is 
built, with each tree trained on a distinct subset of the data and 
using a random subset of features. During the prediction phase, 
each tree in the forest independently makes its own prediction. 
The final prediction is then determined by either taking the 
majority vote which is used for classification or averaging the 
individual tree predictions which is used for regression. 
 The key idea behind Random Forest is that by combining 
multiple decision trees, the overall predictive performance can 
be improved. The algorithm leverages the concept of "wisdom 
of the crowd," where the collective decision of multiple trees 
tends to be more accurate and robust than the decision of a 
single tree. 
 Random Forest has several advantages such as 
accommodating various types of features, mitigating overfitting 
and handling high-dimensional data. It can handle both 
regression and classification tasks, making it a versatile 
algorithm. 
 Furthermore, Random Forest offers the capability to assess 
the importance of different features in the prediction process. 
This means it can provide insights into which features have the 
most influence on the outcome. This information is valuable for 
understanding the underlying factors driving the predictions. 
 In summary, Random Forest is widely recognized as a 
popular and powerful algorithm for predictive modelling. It is 
known for its ability to deliver precise and dependable 

predictions in a wide range of domains. Its ability to provide 
feature importance measures adds to its appeal and usefulness 
in practical applications. 
3) Decision Tree 
 A decision tree is a flexible machine learning algorithm that 
is commonly used for both classification and regression tasks. 
It adopts a treeshaped structure in which each internal node 
denotes a feature whereas, each branch corresponds to a 
outcome of that feature, and each leaf node represents a 
predicted value. 
 The decision tree algorithm learns from the data by 
partitioning the feature space recursively as to make smaller and 
smaller set of data based on the selected features and their 
associated values. The partitioning is done in a way that 
optimizes certain criteria, such as maximizing information gain 
or minimizing impurity, depending on the specific algorithm 
variant used. 
 During the prediction phase, a new data instance is traversed 
through the decision tree from the root to a leaf node, based on 
the values of its features. The class label or predicted value 
associated with the reached leaf node is then assigned to the 
instance. 
4) Support Vector Machine (SVM) 

Support Vector Machines (SVM) are robust and adaptable 
machine learning algorithms extensively utilized for both 
classification and regression purposes. Their strength lies in 
effectively handling complex datasets with numerous 
dimensions. 

The primary objective of an SVM is to find an optimal 
“hyperplane" that separates data points of different classes with 
the maximum margin. In binary classification, this hyperplane 
acts as a decision boundary, where data points on one side are 
assigned to one class, and points on the other side belong to the 
other class. SVMs have several advantages, including their 
ability to handle high dimensional data, resistance to 
overfitting, and effectiveness in dealing with small to moderate-
sized datasets. 

They also have a solid theoretical foundation and offer good 
interpretability, as support vectors can provide insights into the 
classification process. 

However, SVMs may be computationally expensive for large 
datasets, and they can be sensitive to the choice of 
hyperparameters and the kernel function. 

Additionally, SVMs are primarily binary classifiers, but they 
can be extended to handle multi-class problems using 
techniques such as one-vs-one or one-vs-all. 

Each of these algorithms was tested without the use of 
Principal Component Analysis (PCA) to establish a baseline for 
comparison. Following this, Principal Component Analysis 
(PCA) was used to identify the input parameters that were 
contributing the most to the properties to be predicted for each 
output parameter. To assess the impact of Principal Component 
analysis (PCA) on the Machine Learning Models, the analysis 
was conducted both with and without PCA. 

The four previously tested algorithms i.e., Linear Regression, 
Random Forest, Decision Tree, and Support Vector Machine 
(SVM) were again evaluated, this time with the inclusion of 
PCA. The Principal Components found for each of the output 
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parameters were used in the evaluation of each model. Then the 
accuracy of each model was assessed, and the results were 
compared to identify the most suitable algorithm for the given 
dataset and for each output parameter. 

There are four output parameters that are to be predicted by 
the machine learning models: 
1) Tensile Strength 

Tensile strength is the maximum amount of stress that a 
material can endure without fracturing or tearing when 
subjected to stretching or pulling forces. In brittle materials, 
such as certain ceramics, the ultimate tensile strength is 
typically near the point when the material begins to yield or 
deform. On the other hand, in ductile materials like most metals, 
the ultimate tensile strength can often surpass at the yield point, 
allowing for greater resistance to deformation before failure 
occurs. 

Tensile strength is an important mechanical property that 
provides information about the material's capability to 
withstand forces acting in opposite directions along its length. 
It is commonly measured through experiments involving the 
gradual application of tension until the material breaks. This 
parameter plays a pivotal role in engineering and structural 
design, as it determines the load carrying capacity and 
reliability of components under tensile loads. 
2) 0.2% Proof Stress 

0.2% proof stress, also known as the offset yield strength or 
yield point, is a mechanical property used to measure the 
strength of a material. The 0.2% proof stress specifically 
pertains to the stress level at which a material starts to display 
permanent deformation or plasticity. Unlike the ultimate tensile 
strength, which represents the maximum stress a material can 
endure before failure, the 0.2% proof stress emphasizes the 
point at which yielding begins. 

It is typically determined by gradually increasing the load 
applied to a specimen and monitoring its corresponding 
deformation. The stress at which the material exhibits 0.2% 
strain is considered 0.2% proof stress. Its stress is commonly 
used in the design of safety-critical structures and components, 
such as bridges, buildings, and pressure vessels. 
3) Elongation 

Elongation is an important mechanical property used to 
assess the ductility and deformation characteristics of a 
material. It measures the extent to which a material can stretch 
or elongate before it breaks or fractures under tensile stress. 

Elongation is typically a percentage and represents the delta 
in the length of a specimen when subjected to a tensile force. It 
is determined by measuring the original length of the specimen 
before applying the load and comparing it to the length at the 
point of fracture or failure. 

Elongation is a significant property in materials science that 
measures a material's ability to deform plastically before 
fracture. It is a critical factor in assessing ductility, toughness, 
and overall mechanical behavior. By understanding the 
elongation characteristics of different materials, we can make 
logical decisions regarding material selection, process 
optimization, and design considerations to ensure the 
appropriate performance and reliability of structures and 

components. 
4) Reduction in Area 

Reduction in the area is a mechanical property that measures 
the extent of localized deformation and necking that occurs in a 
material during tensile testing. It provides important insights 
into the ductility and deformation of a material under load. 
Reduction in the area is determined by comparing the original 
cross-sectional area of a tensile specimen with the area at the 
point of fracture or failure. It is expressed as a percentage and 
calculated as the difference between the original area and the 
fractured area, divided by the original area, multiplied by 100. 

It is closely related to the elongation property discussed 
above. While elongation measures the increase in length of a 
material specimen before failure, reduction in the area focuses 
on the decrease in cross-sectional area. It is particularly useful 
for assessing the localized deformation and necking that occur 
in materials under tension. 

Reduction in the area is a significant property in material 
science that quantifies the localized deformation and necking 
observed in a material during tensile testing. It provides insights 
into the ductility and deformation behaviour of materials under 
load. By understanding the reduction in area characteristics of 
different materials, engineers can make informed decisions 
regarding material selection, process optimization, and design 
considerations to ensure appropriate performance and 
reliability in various applications. 
5) Data Collection and Pre-processing 

The data used in this project is standardized data made 
available by the National Institute of Material Science (NIMS) 
on Kaggle.com. It contains 19 columns along with a column of 
Alloy Code and 916 rows of data, in which 15 are input 
parameters and the rest are the output parameters i.e., properties 
to be predicted. 

The data we are using includes the following features: 
1. Alloy Code 
2. C - Carbon 
3. Si - Silicon 
4. Mn - Manganese 
5. P - Phosphorus 
6. S - Sulphur 
7. Ni - Nickel 
8. Cr - Chromium 
9. Mo - Molybdenum 
10. Cu - Copper 
11. V - Vanadium 
12. Al - Aluminium 
13. N - Nitrogen 
14. Ceq 
15. Nb + Ta 
16. Temperature (℃) 
17. Tensile Strength (MPa) 
18. 0.2% Proof Stress (MPa) 
19. Elongation (%) 
20. Reduction in Area (%) 

After importing the dataset, it is checked for any NaN or Null 
values present in it and it was found that the dataset doesn’t 
contain any null values. After that, the Alloy code column was 
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removed from the dataset as it is irrelevant information. 
Each material column value was visualized using a boxplot 

and was checked for any major skewness present in it. It was 
noticed that the Cu (Copper) column had a little higher 
skewness so its skewness was improved by using its square-root 
values and then the Cu column was replaced by its square-root 
values column. Similarly, the Al (Aluminium) column was 
found to have higher skewness and it was replaced by the log 
(Al) values column. 

While visualizing it was found that Tensile strength had an 
outlier in which its value was greater than 1000 MPa, hence the 
row containing this outlier value was dropped from the dataset. 
In the visualization of Elongation (%) the skewness was a little 
higher, hence the Elongation Column was replaced by the log 
(Elongation %) values column. After visualization, skewness 
improvement and outlier removal the dataset was well 
organized for further analysis. 

Then using the organized, cleaned and prepared data 
correlation matrix was formed which gives the relation between 
the columns in terms of proportionality and the effect of other 
column values on each column. For visualizing this correlation 
between all the features, a heat map was drawn, it is as given in 
Fig. 1. 

B. Web User-Interface 
 The Web UI developed in Django provides a user-friendly 
interface for predicting material properties based on different 
machine learning models. The UI allows users to input the 
percentage by weight (w/w) of various additives to an alloy and 
obtain predictions for different material properties. The models 
are implemented using the pickle system, which enables the 
retrieval and utilization of pre- trained models or guesses. 
Upon accessing the web UI, users are presented with a clean 
and intuitive interface. The UI consists of input fields. The UI 
provides clear instructions or hints to guide users in correctly 
specifying the additive percentages. 
 Once the user has entered the desired additive percentages, 
they can submit the input data for analysis. The Django backend 
then employs the pickle system to retrieve the pre-trained 
machine learning models. The models encapsulate the 
knowledge and patterns learned from training data and are used 
to make predictions based on the provided input. 
 After the input is processed, the UI displays the predicted 
material properties to the user. These properties may include 
one or more of the desired outputs, depending on the specific 

models or guesses selected. The UI presents the results in a 
visually appealing and organized manner, making it easy for 
users to interpret and utilize the predicted material properties 
for their intended purposes. 
 The web UI implemented in Django ensures the security and 
integrity of user data by employing appropriate measures, such 
as data validation and sanitization techniques. The user-friendly 
interface should increase the user base of the predictive models 
to not just the tech-savvy but also laymen. 

3. Results 
In this section the prediction accuracy of the chosen models 

obtained after training the models, followed by a general 
discussion. The accuracy with and without feature extraction is 
also compared to get an idea of the feature importance, and the 
effect dimensionality reduction can do to model accuracy. The 
model comparison can be seen in the table 1 and 2. 

 
Fig. 1. 

4. Conclusion 
 This paper presented prediction of low alloy steel tensile 
properties using machine learning. 

Table 1 
The accuracy was achieved without PCA implementation 

S. No. Property Best achieved Accuracy without PCA 
Random Forest Regression Linear Regression Decision Tree Support Vector Machine 

1. Reduction in the area (%) 82.39 42.67 79.54 59.46 
2. Elongation (%) 86.83 59.83 52.78 54.67 
3. Tensile Strength (MPa) 76 67.43 92.43 68.74 
4. 0.2% Proof Stress 90.45 75.54 76.93 66.94 

 
Table 2 

The accuracy achieved with the implementation of PCA 
S. No. Property Best achieved Accuracy with PCA 

Random Forest Regression Linear Regression Decision Tree Support Vector Machine 
1. Reduction in the area (%) 75.76 43.64 56.75 62.01 
2. Elongation (%) 88.67 68.34 43.67 52.78 
3. Tensile Strength (MPa) 93.56 68.67 95.54 82.98 
4. 0.2%Proof Stress 90.66 58.012 66.5 62.09 
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